Artificial Intelligence shows promise as Clinical Development Tool
During a typical day, we use a variety of applications that, by virtue of their artificial intelligence, automatically understand our speech and provide near-real-time feedback to support decision-making. Think Siri. But is machine learning, one of a number of AI techniques, ready for clinical applications, specifically to accelerate drug development and/or reduce development costs?
First, some context. Machine learning encompasses a variety of algorithmic techniques that clinical drug developers can use to identify and infer patterns to support enhanced/automated decision-making. One such technique is Natural Language Processing, which can be used to “read” scientific text and infer its semantic context in order to search and find information more easily.
At the end of the training process, the ML algorithm processes larger input data sets to extract new relationships and build a bigger picture and better understanding of the area of interest. A significant advantage of ML is its scalability for use across “big data” data sets.
The world-class ML experts within Oracle Health Sciences, for example, are working with the Information Retrieval and Machine Learning Group within Oracle Labs to use machine learning to identify new adverse drug events from a variety of data streams.
Looking forward, the explosive growth in data science, which capitalizes on AI technology, will deliver new capabilities. For example, it’s possible that AI techniques will identify new drug candidates by identifying new relationships between data. AI can process scientific literature to identify new drug targets by correlating scientific concepts across multiple articles simultaneously, taking into account qualitative and quantitative semantics.
The execution of clinical studies, by which subjects are identified, are enrolled, and complete a trial, is a major drug development bottleneck. AI can optimize this process by detecting trends and negative signals far in advance. Using historical performance data in concert with AI offers the potential to compress the critical path for clinical drug development, while minimizing risk and, ultimately, cost.
If we stretch the potential of AI to support decision-making, we can imagine a world in which virtual assistants will be able to provide guidance and support at all stages of clinical development. It’s not inconceivable that a Siri will one day provide a clinical study manager with a diagnostic capability to improve enrollment in a poorly performing trial—in addition to predicting the weather.
-Srinivas Karri, Director of product strategy with Oracle Health Sciences.